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Abstract
A theory is proposed to describe the competition among antiferromagnetism
(AF), spin glasses (SG) and the Kondo effect. The model describes two
Kondo sublattices with an intrasite Kondo interaction strength JK and an
interlattice quantum Ising interaction in the presence of a transverse field �. The
interlattice coupling is a random Gaussian distributed variable (with average
−2J0/N and variance 32J 2/N) while the � field is introduced as a quantum
mechanism to produce spin flipping. The path integral formalism is used
to study this fermionic problem where the spin operators are represented by
bilinear combinations of Grassmann fields. The disorder is treated within the
framework of the replica trick. The free energy and the order parameters
of the problem are obtained by using the static ansatz and by choosing both
J0/J and �/J ≈ (JK/J )2 to allow, as previously, a better comparison with
the experimental findings. The results indicate the presence of a SG solution
at low JK/J and for temperature T < Tf (Tf is the freezing temperature).
When JK/J is increased, a mixed phase AF + SG appears, then an AF solution
and finally a Kondo state is obtained for high values of JK/J . Moreover,
the behaviours of the freezing and Néel temperatures are also affected by the
relationship between JK and the transverse field �. The first presents a slight
decrease while the second decreases towards a quantum critical point (QCP).
The obtained phase diagram has the same sequence as the experimental one for
Ce2Au1−x Cox Si3, if JK is assumed to increase with x , and in addition it also
shows a qualitative agreement concerning the behaviour of the freezing and the
Néel temperatures.
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1. Introduction

The competition between the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction and the
Kondo effect is recognized as the fundamental mechanism for explaining several properties
of Ce and U compounds. Nevertheless, there is also strong experimental evidence that
the presence of disorder in those compounds can be source of quite novel effects [1–5].
For instance, deviations of the Fermi liquid (FL) behaviour are observed in the magnetic,
thermodynamic and transport properties. Recently, theories have been proposed to explain
how disorder can produce such deviations [6, 7]. However, it is still not clear whether disorder
itself can be the origin of such deviations. Another perspective has adopted the proximity
to a QCP [8] as a possible origin of the non-Fermi liquid (NFL) behaviour. As well as this
complicated scenario with NFL behaviour, some of these physical systems present a highly
non-trivial manifestation of disorder, which is frustration. As a consequence, there are many
phase diagrams with ferromagnetism (FM), antiferromagnetism (AF), spin glass (SG) and a
Kondo state with the complete screening of the localized spins. This raises the question of
whether it is possible to construct theories able to account for those phase diagrams.

The experimental situation for Ce and U alloys, which present together a spin glass phase,
an antiferromagnetic phase and finally a Kondo phase is complicated, especially when the phase
changes occur when changing the matrix composition of the alloy. Moreover, there is certainly
an important local effect in the spin glass, as recently evidenced by local measurements in
CeCu1−xNix alloys [9]. In particular, there is a change from AF to Kondo and then to SG with
increasing x in UCu5−xPdx [10] and a different situation in Ce2Au1−xCoxSi3 alloys [11]. More
precisely, in the case of Ce2Au1−xCoxSi3 alloys, the glassy behaviour is not favoured when
the chemically induced disorder is initially increased. In the experimental phase diagram, for
0 < x < 0.45 and low temperature, a spin glass-like state appears. When the Co doping is
increased, the system experiences a transition to an AF phase. In the interval 0.45 < x < 0.9,
the Néel temperature TN decreases until a QCP is reached at x = 0.9 with no trace of NFL
behaviour. For x > 0.9, the magnetic moments are suppressed due to the Kondo effect.

Recently, a theoretical approach [12] has attempted to describe the interplay between AF
and SG in a Kondo lattice using the same framework previously introduced to study the SG
in the Kondo lattice [13]. The proposed model is a two-Kondo sublattice with an intrasite
exchange interaction with strength JK and a random Gaussian Ji j intersite interaction only
between distinct sublattices. Two quite important points are introduced in this approach.
The first one is that there is no hopping of conduction electrons between distinct sublattices.
Therefore, the antiferromagnetic solutions in this model are entirely associated with the
coupling among localized magnetic moments. The second one takes the relationship J0/J ∝
(JK/J )2, because the two exchange terms cannot be considered as completely independent
from each other [16]. As a consequence, when the strength of the intrasite exchange interaction
JK increases (in units of J ), the degree of frustration J/J0 decreases. This last parameter
controls the emergence of SG or AF solutions in the problem. The results have been shown
in a phase diagram of T/J (T is the temperature) versus JK/J . For small JK/J and low
temperature there is a SG phase. When JK/J is increased, an AF solution has been found.
Finally, for JK/J � 15, the Kondo state becomes dominant. Thus, we can conclude
from the previous calculation [12] that the sequence of phases SG, AF and Kondo mimics
qualitatively the experimental phase diagram of Ce2Au1−xCoxSi3 if JK/J is associated with
the Co content.

However, we can say that the previous agreement was only qualitative to provide the
correct sequence of phases for the alloys Ce2Au1−x Cox Si3 [11], because in the previous
approach there was no mechanism able to produce a QCP. As a consequence, this approach
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cannot provide the proper behaviour of the Néel temperature which should decrease towards a
QCP. Thus, the purpose of the present paper is to obtain specifically a quantitative description
of the phase diagram of Ce2Au1−xCoxSi3 alloys, and in particular of the QCP, by adding a
quantum mechanism to produce spin flipping, given by an additional transverse field � [17].

We take here the replica symmetry mean-field approximation and we use the static
approximation. Indeed, such an approximation is subject to criticism, but it has been shown in
many previous works that it yields a good description of the competition between the Kondo
effect and magnetism in the Kondo lattice models. Moreover, the quantum Ising spin glass in
a transverse field has the same critical behaviour as the M-component quantum rotor which
is exactly solvable in the M → ∞ limit [18]. In this model, the line transition is given by
the singularity of the zero-frequency that is equivalent to the static approximation. The static
approximation is, therefore, relatively well justified for the study of phase boundaries, which is
really the purpose of our paper in the specific case of the SG–AF–Kondo competition in alloys
such as Ce2Au1−xCoxSi3.

Therefore, we will assume a relationship � ∝ J 2
K; this choice, which has already been

used in [16, 17], is taken to account for the fact that the intrasite exchange interaction is able
to produce both the Kondo effect and the RKKY interaction. The transverse field plays a role
similar to the spin flipping part of the Heisenberg model. One of the main achievements of
this approach has been to show the presence of a QCP in the competition between SG and
the Kondo state when � is enhanced and therefore to considerably improve the description of
experimental results.

In this paper, we study the SG–AF competition in the disordered Kondo lattice, described
by the hopping of the conduction electrons only inside each sublattice, an intersite exchange
interaction, given by an Ising-like term only between different sublattices, and a transverse field
� applied in the x-direction, in order to obtain a mechanism able to produce a QCP. We use
also the static approximation and the relationships J0 ∝ J 2

K and � ∝ J 2
K already introduced

in [12, 17]. Therefore, the initial many-parameter problem is reduced to one parameter which
allows a better comparison with experimental results.

The comparison of our theoretical results to experimental data is delicate for two reasons.
First, as we have just discussed, we take a J 2

K dependence of both J0 and �, which is clearly
a crude approximation but which has already given interesting physical results in [16]. Then,
the second question concerns the fact that JK is assumed to increase with the concentration of
Co in Ce2Au1−x CoxSi3 alloys, as previously done with the concentration of Ni in CeCu1−xNix

alloys. Indeed, the role of the so-called ‘chemical pressure’ is less clear than that of the regular
pressure, but obviously the spin glass phase originates in such alloys only from the disorder
of the matrix and we are obliged to make an assumption of the relationship between JK and
the relative host concentration x , which was previously successful in the case of CeCu1−xNix

alloys [17]. This question is in fact not easy to answer theoretically.
In section 2, we introduce the model and the relevant order parameters for the problem.

The saddle point free energy in terms of the order parameters is obtained so that it allows
us to obtain a phase diagram giving temperature T/J versus JK/J . The results and the final
discussion are presented in the last section.

2. General formulation

We have considered in this work a model given by two Kondo sublattices A and B with a
random coupling Ji j only between localized spins in distinct sublattices [12, 19]. There is also
a transverse field � coupled with the localized spins in both sublattices [17]. As mentioned in
section 1, the hopping of conduction electrons between two different sublattices is not allowed
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for simplicity. Therefore, the Hamiltonian is:

H − µN =
∑

p=A,B

[∑

i, j

∑

σ=↑↓
ti j d̂

†
i,p,σ d̂ j,p,σ +

∑

i

ε
f

0,pn̂ f
i,p

+ JK

(∑

i

Ŝ+
i,p ŝ−

i,p + Ŝ−
i,p ŝ+

i,p

)]
+

∑

i, j

Ji j Ŝz
i,A Ŝz

j,B + 2�
∑

i

(Ŝx
i,A + Ŝx

i,B ) (1)

where i and j sums are over N sites of each sublattice. The intersite coupling Ji j is a random
variable following a Gaussian distribution with average −2J0/N and variance 32J 2/N . The
spin operators present in equation (1) are defined as in [12]: ŝ+

i,p = d̂†
i,p,↑d̂i,p,↓ = (ŝ−

i,p)
†,

Ŝ+
i,p = f̂ †

i,p,↑ f̂i,p,↓ = (Ŝ−
i,p)

†, Ŝz
i,p = 1

2 [ f̂ †
i,p,↑ f̂i,p,↑ − f̂ †

i,p,↓ f̂i,p,↓] and Ŝx
i,p = 1

2 [ f̂ †
i,p,↑ f̂i,p,↓ +

f̂ †
i,p,↓ f̂i,p,↑] where d̂†

i,p,σ , d̂i,p,σ ( f̂ †
i,p,σ , f̂i,p,σ ) are the creation and destruction operators for

conduction (localized) fermions.
The partition function is given in the Lagrangian path integral formalism in terms of

Grassmann variables [12, 13] ψi,p,σ (τ ) for the localized fermions and ϕi,p,σ (τ ) for the
conduction ones. The Kondo interaction is treated following [12]. The Kondo state is described
by complex order parameters λp,σ = 1

N

∑
i,σ 〈ϕ∗

i,p,σψi,p,σ 〉 which are introduced in the partition
function using the integral representation of delta function. Therefore, the partition function
when λpσ ≈ λp becomes:

Z/Z d
0 = exp{−2Nβ JK(|λA|2 + |λB |2)}

∫ ∏

p=A,B

D(ψ∗
pψp) exp

[
A(stat)

eff

]
(2)

where Z d
0 is the partition function of the free conduction electrons,

A(stat)
eff =

∑

i, j

∑

ω



†
i (ω)

[
g

i j
(ω)

]−1


 j(ω)+ β
∑

i j

Ji j S
z
i,A Sz

j,B , (3)



†
i (ω) = [

ψ∗
i,A,↑(ω)ψ

∗
i,A,↓(ω)ψ

∗
i,B,↑(ω)ψ

∗
i,B,↓(ω)

]
(4)

and [g
i j
(ω)]−1 is a 4 × 4 matrix given by

[
g

i j
(ω)

]−1

=
[

F
A,i j
(ω) 0

0 F
B,i j
(ω)

]
(5)

with

F
p,i j
(ω) =

[
(iω − βε

f
0,p) β�

β� (iω − βε
f

0,p)

]
δi, j −

∑

K

β2 J 2
K|λp|2ei
k( 
Ri − 
R j )

(iω − βε0)− βεK
I . (6)

The notations I and 0 represent the identity and the null 2 × 2 matrices, respectively.
The free energy is given by the replica method. The procedures are quite close to

reference [12] and in particular to its appendix, but now with the presence of the transverse
field � which modifies the matrix [g

i j
(ω)]−1. Therefore, the averaged free energy within the

replica symmetric theory can be obtained as

βF = β JK(|λA|2 + |λB |2)− β2 J 2

2
(qAqB − q̃Aq̃B)− β

J0

2
m Am B − lim

n→0

1

2Nn

× ln
∫ ∞

−∞

N∏

i=1

Dξi,ADξi,B

∏

α

∫ ∞

−∞
Dzαi,ADzαj,B

× exp

[
∑

w,σ

ln det
[
G

i j
(ω|hαi,p)

]−1
]

(7)
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where the matrix [G
i j
(ω|hαi,p)]−1 in equation (7) is the same matrix given in equation (5),

except that the matrix F
i j,p
(ω) (see equation (6)) is replaced by F

i j,p
(ω) + σβ Jhαi,pδi j I

(σ = +(↑),−(↓)). In equation (7) Dy = dy exp(−y2/2)/
√

2π (y = ξ, z). The internal
field hαi,p applied in the sublattice p = A, B is defined as

hαi,p = J
√

2qp′ξi,p + J
√

2χ p′ zαi,p − J0m p′ . (8)

In equation (8), qp′ , χp′ = βχ p′ and m p′ are the SG order parameter, the static susceptibility
and the magnetization, respectively. It should be noticed that the internal field applied in
sublattice p depends on the behaviour of qp′ , χp′ and m p′ with p′ = p. That is a direct
consequence of the choice made in the model where only interlattice frustration has been
considered in the present work.

Finally, to solve equation (7), the matrix [G
i j
(ω|hαi,p)]−1 is substituted by [G

µν
(ω|hαi,p)]−1.

In fact, this approximation [12, 13, 17] represents a Kondo sublattice p in the presence of a
constant magnetic field hαi,p where the effects of the Kondo sublattice p′ are placed. Therefore,
in equation (7), we have:

ln det
[
G

i j
(ω|hαi,p)

]−1 = 1

N

∑

j

ln det
[
G
µν
(ω|hαi,p)

]−1
. (9)

The sum over the Matsubara frequencies in equation (7) can now be performed as
usual [12, 13, 17]. The proposed decoupling also allows us to use Fourier transformation
which can be evaluated by assuming a constant density of states for the conduction electron
band ρ(ε) = 1/2D for −D < ε < D. Thereby, the free energy is obtained as:

βF = β JK(|λA|2 + |λB |2)+ β2 J 2

2
χ̄Aχ̄B + β2 J 2

2
(χ̄AqB + χ̄BqA)

− β J0

2
m Am B − 1

2

∫ ∞

−∞
DξiA

∫ ∞

−∞
Dξ jB ln

[
∏

p=A,B

∫ ∞

−∞
Dz peE(Hp)

]
(10)

where

E(Hp) = 1

βD

∫ +βD

−βD
dx ln

{
cosh

(
x + βHp

2
)+ cosh(

√
�

)}
(11)

with

� = 1
4 (x − βHp)

2 + (β JKλp)
2 (12)

and Hp =
√
�2 + h2

p, with the internal field h p given by equation (8) (here without the site and

replica indices). The saddle point order parameters follow directly from equations (10)–(12).
The limit of stability for the order parameters with replica symmetry is given when the

Almeida–Thouless eigenvalue λAT becomes negative [14, 15]:

λAT = 1 − 2(β J )4
∏

p=A,B

∫ ∞

−∞
Dξp

[
Ip(ξp)

(
∫ ∞
−∞ Dz peE(Hp))2

]2

(13)

where

Ip(ξp) =
∫ ∞

−∞
Dz peE(Hp)

∫ ∞

−∞
Dz p

∂

∂h p

[
eE(Hp)

∂E(Hp)

∂h p

]
−

[∫ ∞

−∞
Dz peE(Hp)

∂E(Hp)

∂h p

]2

.

(14)
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Figure 1. Theoretical phase diagram T/J versus JK/J for several values of J0/J : (a) J0/J = 0,
(b) J0/J = 1.5, (c) J0/J = 1.8 and (d) J0/J = 2.0. The full lines correspond to the results
obtained for �/J = 0.0 while the dashed ones are for �/J = 1.5.

3. Results and conclusions

The central issue of the present work is to account for the general features of the experimental
phase diagram of Ce alloys such as Ce2Au1−x Cox Si3 [11] which present with increasing Co
concentration the successive sequence of the SG phase and then the AF phase with the Néel
temperature TN decreasing towards a QCP. In principle, the solutions for the saddle point order
parameters qp, χ p, m p and λp (p = A, B) should be found in a parameter space with axes
given by J0/J , JK/J and �/J (J and D are kept constant).

Therefore, in order to identify the role of each parameter in the problem, the solutions for
qp, χ p, m p and λp (p = A, B) are shown in figure 1 as a phase diagram T/J versus JK/J
for several values of J0/J and �/J . The SG solution corresponds to qA = qB = 0 (with
m A = m B = 0) while the AF solution is equivalent to m A = −m B = 0 and qA = qB = 0. The
Kondo state in the phase diagram corresponds to the situation where the two λp (p = A, B)
are different from zero. In figure 1(a), J0 = 0 and � = 0 or �/J = 1.5, this situation
corresponds to the studied case in [17] in which there is no AF solution. For � = 0, the
phase diagram displays three solutions. At high temperature and small JK/J , a paramagnetic
(PARA) solution is found. When the temperature is decreased, there is a transition to the SG
phase at Tg, which coincides with the Tf temperature that locates the Almeida–Thouless line
(the temperature where the Almeida–Thouless eigenvalue is zero). If JK/J is enhanced, there
is a transition at JK = JK1(T/J ) to a region where the Kondo solution is dominant. When
�/J is tuned on, there is a clear effect on the transition lines Tg and JK1(T/J ); the first one is
decreased while the second is displaced to a larger JK/J value.
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When J0/J is enhanced, as is shown in figures 1(b)–(d), an AF solution for the order
parameters appears below the Néel temperature TN for small JK/J . For this particular situation,
the set of temperatures TN, Tf and Tg is a function of �/J and J0/J . For � = 0, the temperature
TN increases with J0/J while the replica symmetric transition temperature Tg and the Almeida–
Thouless line Tf decrease with J0/J . Nevertheless, similar to [15], Tf becomes larger than
Tg. Therefore, in such circumstances, there is the onset of a mixed phase AF + SG at Tf.
This mixed phase represents a replica symmetry breaking SG phase with non-zero spontaneous
sublattice magnetization. Finally, at Tg there is a transition to a pure SG phase. For increasing
JK/J , a Kondo solution at JK > JK1(T/J ) is found again. When the transverse field �/J
is tuned on, its effect is basically to decrease simultaneously TN, Tf and Tg and displace the
transition line JK1(T/J ) as before.

However, to compare the results obtained in this work with the experimental results, it is
better to reduce the number of parameters which are in fact not independent of each other,
because both the Kondo effect and the RKKY interaction can be generated directly from
the intrasite exchange interaction. Thus, we choose a relationship among the parameters
J0/J , JK/J and �/J similar to that used in [12] where a relationship J0/J ∝ (JK/J )2 has
successfully reproduced the experimental sequence of phases. Nevertheless, in [12] we cannot
explain at all the decrease of the Néel temperature TN towards a QCP. In the present work, the
transverse field � has been introduced to provide a simple mechanism able to reproduce the
spin flipping part of the Heisenberg model [17]. Therefore, it would also be natural to assume
�/J ∝ (JK/J )2 in the present problem. It should be remarked that this choice introduces
an additional complexity. It has been shown that �/J and J0/J enforce different effects in a
previously studied competition between AF and SG. Within a certain range of J0/J , this new
choice can favour SG, SG + AF or AF, while �/J tends to destroy the three phases leading the
transition temperatures to zero [20].

The solution of the set qp, χ , m p and λp with J0/J ∝ �/J ∝ (JK/J )2 is shown in
figure 2(b) giving the phase diagram T/J versus JK/J . In particular, the Néel temperature
TN ≡ TN(JK) can be computed expanding the saddle point equations in powers of m p. At the
second-order critical line TN, we can make qp = λp = 0, therefore χ̄ = χ̄p = 1/(βc J0) and

m



1 − βc J0




1 + ∫

Dξξ 2 coshβc

√
2J ξ 2

J0βc
+ �2

1 + ∫
Dξ cosh βc

√
2J ξ 2

J0βc
+ �2







 = 0, (15)

where βc = 1/TN and m = m A = −m B . For TN tending to zero, the critical value of �c is
given by analytical solution of equation (15): �c = J0 + 2J 2/J0. For 0 � JK/J � 13.5,
figure 2(b) shows the presence of the SG solution in which Tg and Tf coincide. Then, in a very
small interval of JK/J , Tf = Tg. Therefore, the mixed phase AF + SG appears after the SG
phase. Finally, in the interval 13.9 � JK/J � 17.0, only the AF solution is present. When
JK/J increases, the Néel temperature decreases until a QCP. Above this point onwards, there
is a transition line to the Kondo state characterized by λA = λB = 0 [17]. At high temperature,
the solutions of the order parameters are qp = 0, m p = 0 and λp = 0 (p = A, B).

The situation described in the present replica symmetry mean field theory can be analysed
as follows: for a low JK/J value (corresponding to a high value of J/J0), frustration
is dominant and the long range internal field is given by the SG component of h p (see
equation (8)). When JK/J is increased, the degree of frustration J/J0 is decreased, and
therefore the localized spin of the sublattice A (B) starts to couple with an internal field
which depends on the negative magnetization of the sublattice B (A) in the AF ordering [12].
However, this process also implies the increase of the transverse field � and consequently the
freezing temperature (Tg) is slightly decreasing. On the other hand, the Néel temperature (TN)
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Figure 2. Comparison between experimental and theoretical phase diagrams: the upper figure is an
experimental phase diagram of Ce2Au1−x Cox Si3 alloys [11]; the lower figure is a theoretical phase
diagram T/J versus JK/J for the relations � = 0.011(JK/J )2 and J0/J = 0.73�/J , where the
dotted lines are the extrapolations carried to lower temperature.

is deeply affected and decreases towards a QCP. Finally, for sufficiently high JK/J , there is
complete dominance of the Kondo effect [12, 13, 17]. Finally, as we have already explained
in the introduction, the comparison between theory and experiment is more delicate in the
case of disordered alloys, where the different phases occur as a function of the relative matrix
concentration, than in the classical case, where increasing pressure makes JK increase. But
here we consider that JK increases with increasing Co concentration, as we have successfully
assumed that JK increases with increasing Ni concentration in the case of CeCu1−xNix

alloys [17]. Under this assumption, the theoretical results given in figure 2(b) agree quite
well with the experimental phase diagram of Ce2Au1−xCoxSi3 alloys [11] (see figure 2(a))
and in particular we obtain the same order for the sequence of phases and, mainly, the correct
behaviour of the Néel temperature.

To conclude, we have used a two-sublattice model with two exchange interactions,
an intrasite exchange and a random intersite between localized Ising spins in the presence
of a transverse field. The main goal of the present work has been to reproduce some
fundamental aspects of the phase boundary contained in the experimental phase diagram of
the Ce2Au1−x Cox Si3 alloys [11]. Finally, the theoretical results shown in figure 2(b) account



QCP in the spin glass–antiferromagnetism competition in Kondo lattice systems 3487

quite well for the most important part of the experimental phase diagram of Ce2Au1−x Cox Si3

alloys [11] with the cobalt concentration (figure 2(a)) and the agreement between the two
figures showing a clear improvement with the present model in comparison with previous ones.
In fact, important questions are not really solved, such as for example the different possible
Kondo–AF–SG sequences found in different disordered alloys, the relationship between the
parameters of the model and the matrix concentration, which is certainly less clear than the
pressure dependence, and finally the precise local nature of the spin glass phase. Further work
will therefore be necessary to improve the theoretical description and to obtain new phase
diagrams of Ce or U alloys or compounds with either the matrix concentration or the external
pressure.
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Mydosh J A and Süllow S 2003 Phys. Rev. B 67 104405
[4] Ben-Li Y, MacLaughlin D E, Rose M S, Ishida K, Bernal O O, Lukefhar H G, Heuser K, Stewart G R, Butch N P,

Ho P C and Maple M B 2004 Phys. Rev. B 70 024401
[5] Zapf V S, Dickey R P, Freeman E J, Sirvent C and Maple M B 2002 Phys. Rev. B 65 024437
[6] Miranda E and Dobrosavljevic V 2001 Phys. Rev. Lett. 86 264
[7] Castro Neto A H and Jones B A 2000 Phys. Rev. B 62 14975
[8] Coleman P 1999 Physica B 259–261 353
[9] Marcano N, Espeso J I, Gomez-Sal J C, Fernandez J R, Herrero-Albillos J and Bartolome F 2005 Phys. Rev. B

71 134401
[10] Vollmer R, Pietrus T, Lohneysen H V, Chau R and Maple M B 2000 Phys. Rev. B 61 1218
[11] Majundar S, Sampathkumaran E V, Berger St, Della Mea M, Michor H, Bauer E, Brando M, Hemberger J and

Loidl A 2002 Solid State Commun. 121 665
[12] Magalhaes S G, Schmidt A A, Zimmer F M, Theumann A and Coqblin B 2003 Eur. Phys. J. B 34 447
[13] Theumann A, Coqblin B, Magalhaes S G and Schmidt A A 2001 Phys. Rev. B 63 054409
[14] Almeida J R L and Thouless D J 1978 J. Phys. A: Math. Gen. 11 983
[15] Magalhaes S G, Schmidt A A, Zimmer F M, Theumann A and Coqblin B 2002 Eur. Phys. J. B 30 419
[16] Iglesias J R, Lacroix C and Coqblin B 1997 Phys. Rev. B 56 11820
[17] Theumann A and Coqblin B 2004 Phys. Rev. B 69 214418
[18] Ye J, Sachdev S and Read N 1993 Phys. Rev. Lett. 70 4011
[19] Korenblit I Ya and Shender E F 1985 Sov. Phys.—JETP 62 1030
[20] Theumann A, Schmidt A A and Magalhaes S G 2002 Physica A 311 498

Zimmer F M and Magalhaes S G 2006 Physica A 359 380

http://dx.doi.org/10.1103/PhysRevB.65.245114
http://dx.doi.org/10.1103/PhysRevB.66.140402
http://dx.doi.org/10.1103/PhysRevB.67.104405
http://dx.doi.org/10.1103/PhysRevB.70.024401
http://dx.doi.org/10.1103/PhysRevB.65.024437
http://dx.doi.org/10.1103/PhysRevLett.86.264
http://dx.doi.org/10.1103/PhysRevB.62.14975
http://dx.doi.org/10.1016/S0921-4526(98)00795-9
http://dx.doi.org/10.1103/PhysRevB.71.134401
http://dx.doi.org/10.1103/PhysRevB.61.1218
http://dx.doi.org/10.1016/S0038-1098(02)00053-4
http://dx.doi.org/10.1140/epjb/e2003-00243-y
http://dx.doi.org/10.1103/PhysRevB.63.054409
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1140/epjb/e2002-00398-y
http://dx.doi.org/10.1103/PhysRevB.56.11820
http://dx.doi.org/10.1103/PhysRevB.69.214418
http://dx.doi.org/10.1103/PhysRevLett.70.4011
http://dx.doi.org/10.1016/S0378-4371(02)00810-5
http://dx.doi.org/10.1016/j.physa.2005.05.080

	1. Introduction
	2. General formulation
	3. Results and conclusions
	References

